A G C T A C G A A A A G T A C G A T T    T A A C G T A C C C C T A C G T A C G T A C G T  A C G T A C G T A C   A C G T A A C G T A C G T A C G
A G C T A C  A A A A G T A C G A T T    T A A C G T A C C C C T A C G T A C G T A C G T  A C G T A C G T A C   A C G T  C G T A C G T A C G
A G C T A C G A A A A G T A C G A T T    T A A C G T A C C C C T A C G T A C G T A C G T  A C G T A C G T A C   A C G T A A C G T A C G T A C G
A G C T A C  A A A A G T A C G A T T G C A G T A A C G T A C C C C G A C G T A C G T A C G T  A C G T A C G T A C   A C G T  C G T A C G T A C G
A G C T A C  A A A A G T A C G A T T    T A A C G T A C C C C G A C G T A C G T C C G T  A C G T A C G T A C   A C G T  C G T A C G T A C G
A G C T A C  A A A A G T A C G A T T    T A A C G T A C C C C G A C G T A C G T C C G T  A C G T A C G T A C   A C G T  C G T A C G T A C G
A G C T A C A A A A A  T A C G A T T    T A A C G T A C C C C T A C G T A C G T A C G T  A C G T A C G T A C   A C G T  C G T A C G T A C G
A G C T A C  A A A A G T A C G A T T    T A A C G T A  C C T A C G T A C G T A C G T  A C G T A C G T A C   A C G T A A C G T A C G T A C G
A G C T A C  A A A A G T A C G A T T    T A A C G T A  C C T A C G T T T T T C C G T  A C G T A C G T A C   A C G T A A C G T A C G T A C G
A G C T A C  A A A A G T A C G A T T G C A G T A A C G T A  C C T A C G T T T T T A C G T  A C G T A C G T A C   A C G T A A C G T A C G T A C G
A G C T A C A A A A A G  A C G A T T    T A A C G T A C C C C T A C G T T T T T A C G T  A C G  C G T A C   A C G T A A C G T A C G T A C G
A G C T A C  A A A A G T A C G A T T    T A A C G T A  C C C T A C G T T T T T A C G T  A C G  C G T A C   A C G T A A C G T A C G T A C G
A G C T A C G A A A A G T A C G A T T G C A G T A A C G T A C C C C T A C G T T T T T A C G T  A C G  C G T A C   A C G T A A C G T A C G T A C G
A G C T A C  A A A A G T A C G A T T G C A G T A A C G T A C C C C T A C G T T T T T A C G T  A C G  C G T A C   A C G T  C G T A C G T A C G
A G C T A C  A A A A G T A C G A T T    T A A C G T A C C C C T A C G T T T T T A C G T  A C G  C G T A C   A C G T  C G T A C G T A C G

C

A

M

I

Critical

Assessment

of

Metagenome

Interpretation

What is Cami?

In just over a decade, metagenomics has developed into a powerful and productive method in microbiology and microbial ecology. The ability to retrieve and organize bits and pieces of genomic DNA from any natural context has opened a window into the vast universe of uncultivated microbes. Tremendous progress has been made in computational approaches to interpret this sequence data but none can completely recover the complex information encoded in metagenomes. A number of challenges stand in the way. Simplifying assumptions are needed and lead to strong limitations and potential inaccuracies in practice. Critically, methodological improvements are difficult to gauge due to the lack of a general standard for comparison. Developers face a substantial burden to individually evaluate existing approaches, which consumes time and computational resources, and may introduce unintended biases. The Critical Assessment of Metagenome Interpretation (CAMI) is a new community-led initiative designed to help tackle these problems by aiming for an independent, comprehensive and bias-free evaluation of methods. [read more]

Rayan Chikhi:
@DavidKoslicki @CAMI_challenge @Alexey_Gurevich A proposal for changing (meta) QUAST metrics when evaluating strai… twitter.com/i/web/status/1…
Mar 13, 2020
CAMI Challenge:
For this challenge we are especially interested in strain-aware assemblies. Anybody working on this?
Mar 13, 2020
CAMI Challenge:
Now on: Piotr Dabrowski discussing the Pathogen Challenge https://t.co/83yfEOx010
Mar 12, 2020
CAMI Challenge:
Fernando Meyer now presenting binning results https://t.co/offbpIQSMw
Mar 12, 2020
CAMI Challenge:
@DavidKoslicki discussing profiling metrics with @gail_l_rosen (remotely) on the CAMI evaluation workshop https://t.co/fENq0rRtQW
Mar 12, 2020
CAMI Challenge:
@DavidKoslicki @luizirber There is a chat, open the side panel
Mar 12, 2020